Preliminary communication

Phosphorus-phosphorus coupling constants in cis- and trans-isomers of bis(trifluorophosphine)chromium tetracarbonyl

T.R. JOHNSON, R.M. LYNDEN-BELL and J.F. NIXON Chemical Laboratory, University of Sussex, Brighton BN1 9QJ, Sussex (Great Britain) (Received October 31st, 1969)

Jenkins and Shaw¹ have observed that phosphorus—phosphorus coupling constants (${}^{2}J(PMP')$) in second and third row transition metal complexes containing identical phosphines are much larger when the phosphine ligands occupy *trans*-positions than when they are *cis*-, and this has been widely used as an aid to assigning stereo-chemistry^{2,3,4}.

In complexes containing dimethylphenylphosphine for example the proton NMR spectrum usually shows a deceptively simple "triplet" pattern in the strongly coupled system because ${}^{2}J(PMP')$ is much larger than ${}^{2}J(PCH)$. Spectra of this type have often been discussed in terms of the concept of "virtual" coupling. In *cis*-complexes ${}^{2}J(PMP')$ is usually rather small and the spectrum appears as a doublet, although two recent reports of metal carbonyl complexes of P(OCH₂)₃CR ligands indicate that ${}^{2}J(PMP')$ can sometimes be large enough in *cis*-compounds to give a "virtually coupled" spectrum^{5,6}.

We describe here 19 F and 31 P NMR studies on a mixture of *cis*- and *trans*bis(trifluorophosphine)chromium tetracarbonyl made by PF₃ displacement of norbornadiene from the norbornadienechromium tetracarbonyl complex which show conclusively than ${}^{2}J(PMP')$ is much larger in the *cis*-isomer than in the *trans*-isomer.

 $C_7H_8Cr(CO)_4 + 2PF_3 \rightarrow cis + trans - (PF_3)_2Cr(CO)_4 + C_7H_8$

Figure 1 shows the ¹⁹F NMR spectrum of the *cis-trans*-mixture which are both $X_3AA'X_3'$ spin systems (X = fluorine, A = phosphorus) and the individual spectra are easily identifiable on account of their different fluorine chemical shifts (about 1.3 ppm). As discussed elsewhere^{7,8} analysis of the spectra is facilitated because ²J(PMP') $\ll J(PF)$ and the resulting spin-coupling parameters are summarised in Table 1. ¹J(PF) and ³J(PMPF) have opposite'signs in agreement with our studies on *cis*-tetracarbonylmolybdenum fluorophosphine complexes⁷ and it is interesting to note that the *trans*-isomer has much larger values for ³J(PMPF) and ⁴J(FPMPF) than the *cis*-analogue. The ³¹ P NMR spectrum of the mixture also clearly shows the presence of the two isomers and confirms that ²J(PMP') (*cis*) > ²J(PMP') (*trans*).

These results suggest that care should be taken when stereochemical assignments

J. Organometal. Chem., 21 (1970) P15-P16

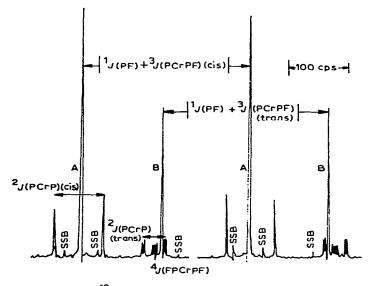


Fig.1.94.1 Mcps. ¹⁹FNMR spectrum of amixture of *cis*- and *trans*-Cr(CO)₄(PF₃)₂. A is the *cis*-isomer and B is the *trans*-isomer. The more extensive fine structure associated with the *trans*-isomer result from the larger values of ³J(PCrPF) and ⁴J(FPCrPF') coupling constants compared with those of the *cis*-isomer. SSB = spinning band.

TABLE 1

NMR PARAMETERS FOR cis- AND trans-(PF3)2Cr(CO)4

Isomer	Ф(F) ^a	δ(P) ^b	¹ <i>J</i> (PF) (H2)	³ J(PMPF) (Hz)	⁴ J(FPMPF) (Hz)	² J(PMP') (Hz)
cis- ^c	-0.2		(-)1312	(+) 2.5	~0	77.0
trans-	+1.1	-177.8	(-)1318	(+)11.5	2.6	34.0

^aIn ppm (reL CCl₃F). ^bIn ppm (reL H₃PO₄). ^cProf. J.G. Verkade has independently studied this isomer (personal communication).

are made based entirely on NMR spectroscopic data, particularly in the case of chromium derivatives^{9,10}. A further complication exists because ${}^{2}J(PMP')$ (*cis*) and ${}^{2}J(PMP')$ (*trans*) have opposite signs^{11,12} and this aspect will be discussed in greater detail elsewhere¹².

REFERENCES

- 1 J.M. Jenkins and B.L. Shaw, Proc. Chem. Soc., (1963) 279.
- 2 M.S. Lupin and B.L. Shaw, J. Chem. Soc., A, (1968) 741.
- 3 J. Powell and B.L. Shaw, J. Chem. Soc., (1968) 211.
- 4 P.R. Brookes and B.L. Shaw, J. Chem. Soc., (1967) 1079 and references therein.
- 5 W.E. Stanclift and D.G. Hendricker, Inorg. Chem., 7 (1968) 1242.
- 6 P.K. Maples and C.S. Kraihanzel, Chem. Commun., (1968) 922.
- 7 C.G. Barlow, J.F. Nixon and J.R. Swain, J. Chem. Soc., A, (1969) 1082.
- 8 T.R. Johnson and J.F. Nixon, J. Chem. Soc., A, (1969) in press.
- 9 F. Ogilvie, J.M. Jenkins, J.G. Verkade and R.J. Clark, 154th Amer. Chem. Soc. Meeting, Chicago, Paper 0.56; and personal communication.
- 10 E. Moser and E.O. Fischer, J. Organometal. Chem., 15 (1968) 157.
- 11 R.D. Bertrand, F. Ogilvie and J.G. Verkade, Chem. Commun., (1969) 756.
- 12 R.M. Lynden-Bell and J.F. Nixon, papers in preparation.

J. Organometal. Chem., 21 (1970) P15-P16